

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

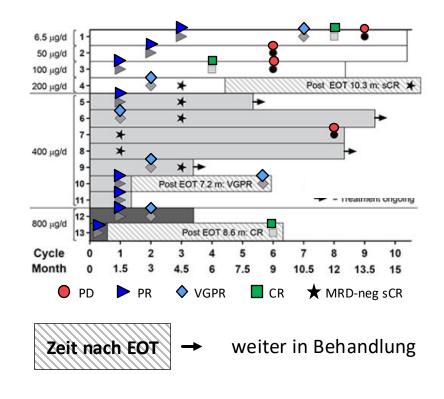
Hermann Einsele

Resistance and combination of bispecifics in MM

University Hospital Würzburg, Germany

Disclosures of Einsele, Hermann

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
BMS/Celgene	x		x			x	x
Janssen	x		x			x	x
Amgen	x		x			x	x
Takeda			x			x	x
Sanofi	x		x			x	x
GSK	x		x			x	x
Roche			x			x	x
Novartis	x		×			x	


3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Proof-of-Concept-Study: AMG 420 Updated results from a FIH phase 1 dose escalation study

Efficacy

- Response
 - Total: 6 sCRs, 3 CRs, 2 VGPRs, 2 PRs
 - At 400 µg/day: 70% response rate
- 5 MRD-negative sCRs, 1 VGPR and 1 PR
- Median time to response: 1 month,
- response in the first cycle 9 of 13 pts.
- Duration of response: 5.6-10.4 months
- 4 patients under treatment
- In some patients, response lasting >1 year

Patients with RRMM responding to AMG 420 since February 2019

Topp MS, ... Einsele H, J Clin Oncol 2020

BCMA targeting bispecific antibodies in RRMM

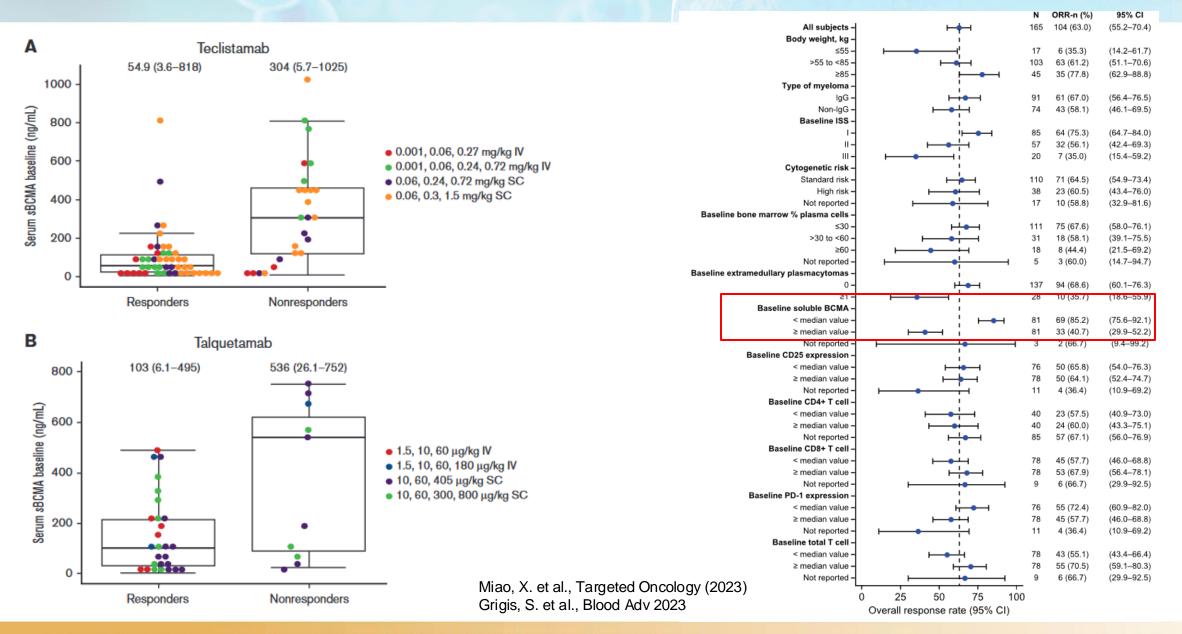
	Teclistamab ^{1,2}	Elranatamab ³	Elranatamab ⁴	Linvoseltamab ⁵	Alnuctamab ^{6,7}	ABBV-3838
Patients (n)	165	55	123	117	73	124
Dosing schedule	weekly /q2w SC	weekly/q2w_SC	weekly/q2w IV	weekly/ q2 or 4 w IV	weekly/ q2-4w IV/SC	q3 weeks IV
med Prior LOT	5	6	5	5	4	5
ISS III / ↑↑PC (%)	12.3 / 11.2	20 /	15.4 /21.1	18.8 /22.2	16 /	31 /
HR / EMD (%)	25.7 / 17	29.1/ 30.9	25.2 / 31.7	35.9/ 13.7	26 / 21	18 /
TCR (%)	77.6	90.9*	100	73.5	63	82
ORR / ≧ CR (%) @ RP2D	63 / 45.5 1500 μg/kg SC	64 / 38.2 76 mg SC	61 / 35 76 mg SC	71 / 30 200 mg IV	69/ 43 30 mg SC	57 17 40-60 mg IV
mDOR	21.6 mos	17.1 mos	71.5% @ 15 mos	-		72.2 % @ 12 most
mPFS	11.3 mos ≦ 3 LOT 18.1 mos	11.8 mos	50.9% @ 15 mos	72.7% @ 6 mos	53% @ 12 mos	10.4 mos 57.9% @ 12 most
mOS	21.9 mos	21.2 mos	56.7% @ 15 mos			
CRS (%)	72.1 (0.6 G3)	87.3 (0 G3)	56.3 (0 G3)	45.3 (0.9 G3)	56 (0 G3)	57 (2 G3)
Infections (%)	80 (55.2 G3-4)	74.5 (27.3 G3-4)	69.9 (39.8 G3-4)	59.8 (36.8 G3-4)	62 (16 G3-4)	41 (5 G3-4)

LOT = lines of therapy, HR = high risk cytogenetics, EMD = extramedullary disease, $\uparrow\uparrow PC = > 50-60\%$ bone marrow plasma cells, TCR = triple class refractory, ORR = overall response rate, DOR = duration of response, PFS = progression free survival, OS = overall survival, SC = subcutaneous, IV = intravenous, mos = months, * = 23.6\% prior anti-BCMA, - = not reported, \ddagger MPFS at ≥ 40 mg dose level

1. Moreau et al. NEJM 2022.; 2. Van de Donk et al ASCO 2023, 3. Bahlis et al Nat Med 2023; 4. Lesokhin et al Nat Med 2023; 5. Lee et al J ASCO 2023; 6 Wong et al ASH 2022; 7. Ban ASH2023, abstract # 2011; 8. D'Souza A J Clin Oncol 2022

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

GPRC5D or FcRH5 targeting BsAb in multiple myeloma


		Anti-GPRC5d Talquetamab ^{1,2}		Anti-G Forimt		Anti-FcRH5 Cevostamab ^{4,5}
Patients (n)	143 T-cell redirecting Rx naïve Anti-BCMA ADC allowed	145 T-cell redirecting Rx naïve Anti-BCMA ADC allowed	51 Prior anti-BCMA CAR/BsAb allowed	51 Prior anti-BCMA ADC/ CAR/BsAb allowed	57 Prior anti-BCMA ADC/ CAR/BsAb allowed	161
Dosing schedule	405 µg/kg SC QW	800 µg/kg SC Q2W	5-1600 µg/kg SC	18-10000 µg IV Q2-3W	1200-7200 µg SC Q2-3w	20-198 mg IV q3w
med Prior LOT	5	5	6	5	4	6
ISS III / ↑↑PC (%)	19.6 / 12.3	24.3 / 22.7	17.6 / 17			
HR / EMD (%)	31.1 / 23.1	28.9 / 25.5	40.9 / 31.4	46.7 / 27.5	47.7 / 31.6	39.8 / 21.1
TCR / Penta-refr. (%)	74.1 / 29.4	69/ 23.4	84.3 / 41.2	62 / 36	71.9 / 42.1	84.5 / 68.3
ORR / ≧ CR (%) ORR prior BCMA (%)	74.1 / 33.6	71.7 / 38.7	64.7 / 35.3	71.4 / 34.7 50	63.6 / 25.5 54.5	56.7 /8.4 ×
mDOR	9.5 mos	NR	11.9 mos	10.8 mos	12.5 mos	11.5 months
12-month PFS (%)	34.9	54.4	38.1			
12-month OS (%)	76.4	77.4	62.9			-
CRS (%)	79 (2.1 G3)	74.5 (0.7 G3)	76.5 (2.0 G3)	82.4 (2.1 G3)	78.9 (1.8 G3)	79.5 (2.3 G3)*
Infections (%)	58.7 (19.6 ≧G3)	66.2 (14.5 ≧G3)	72.5 (27.5 ≧G3)	60.8 (21.5 ≧G3)	45.6 (26.4 ≧G3)	43
Dysgeusia (%) Skin/Nail (%)	72 55.9 / 54.5	71 73.1 / 53.8	76.5 68.6 / 62.7	72.5 23.5	77.2 28.1	na

* 2-step-up 0.3/3.6/target dose 60-160 mg, * at the132-198 mg dose level, na not reported

1. Schinke at al ASCO 2023 , 2. Chari et al NEJM 2023; 3. Carlo-Stella et al. ASH 2022; 4. Trudel et al. ASH 2021; Harrison et al IMS2023

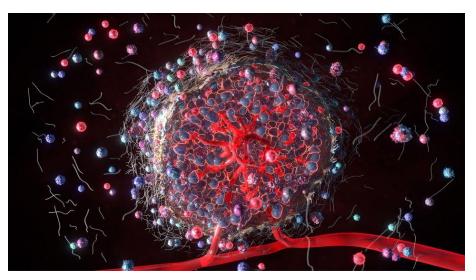
3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Tumor Load/sBCMA determines Efficacy and Safety of BCMA-directed TCE

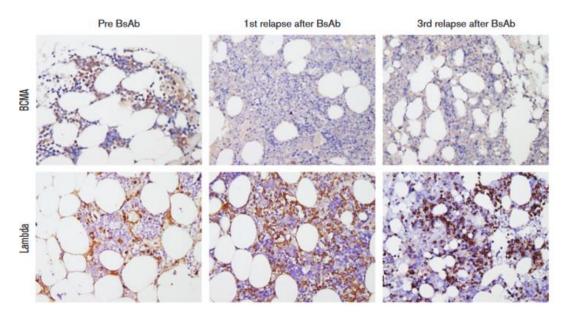
3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Patient Case

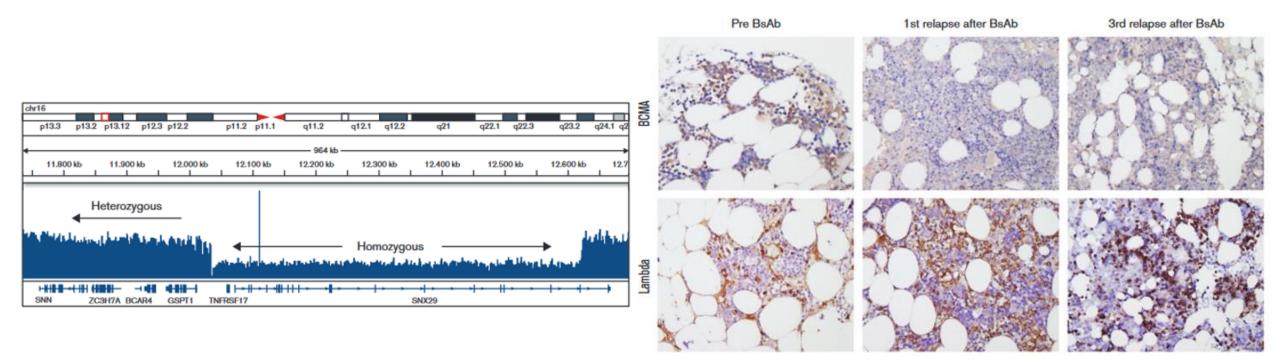
 $\overrightarrow{0}$ 66 yrs., R-ISS III, BM-Infiltration 85 %, FISH: 17p del, gain 1q21, IgA 7,4 g/dl


- Hyperviscosity Syndrome
- Hypercalcemia
- → DSMM XX Study: Tec/DaraRd start with Teclistamab → no response
- \rightarrow Plasmapheresis 2x
- \rightarrow Dexamethasone 40 mg x 4
- → Restart DSMM XX Tec/DaraRd (4 Cycles)

 \rightarrow CR, MRD-neg. (10⁻⁶)


Acquired Resistance to Bispecific Antibodies

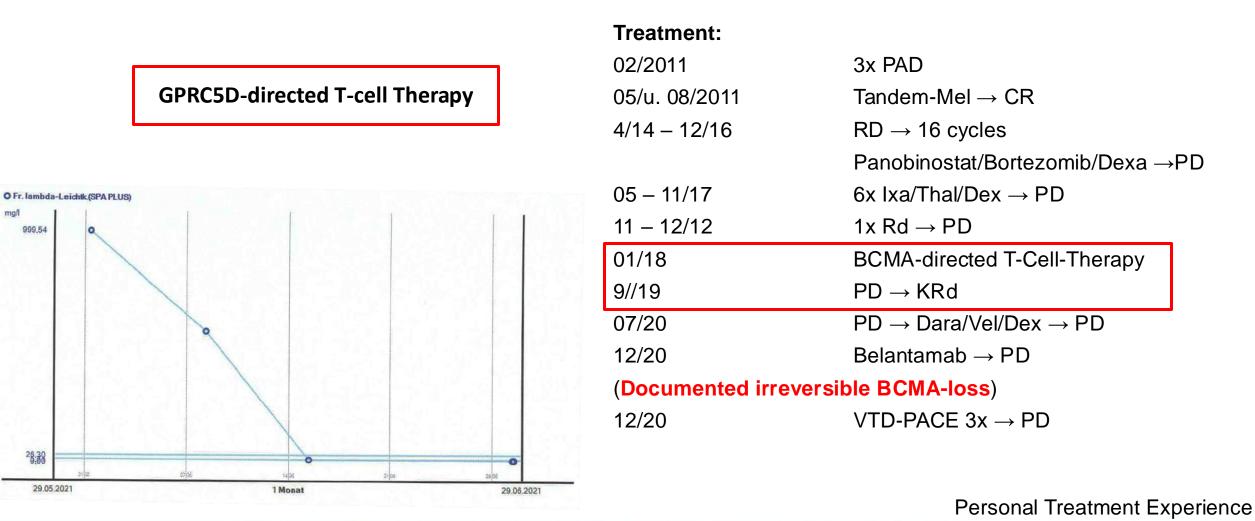
- \rightarrow Target Antigen Loss
- \rightarrow T Cell Exhaustion
- \rightarrow Tumor Microenvironment, esp. Tregs



Tumor microenvironment Halliday A, TechnologyNetworks Cancer Research 2022

Truger, M. et al., Blood Adv 2021 Lee, H., Nat Med 2023

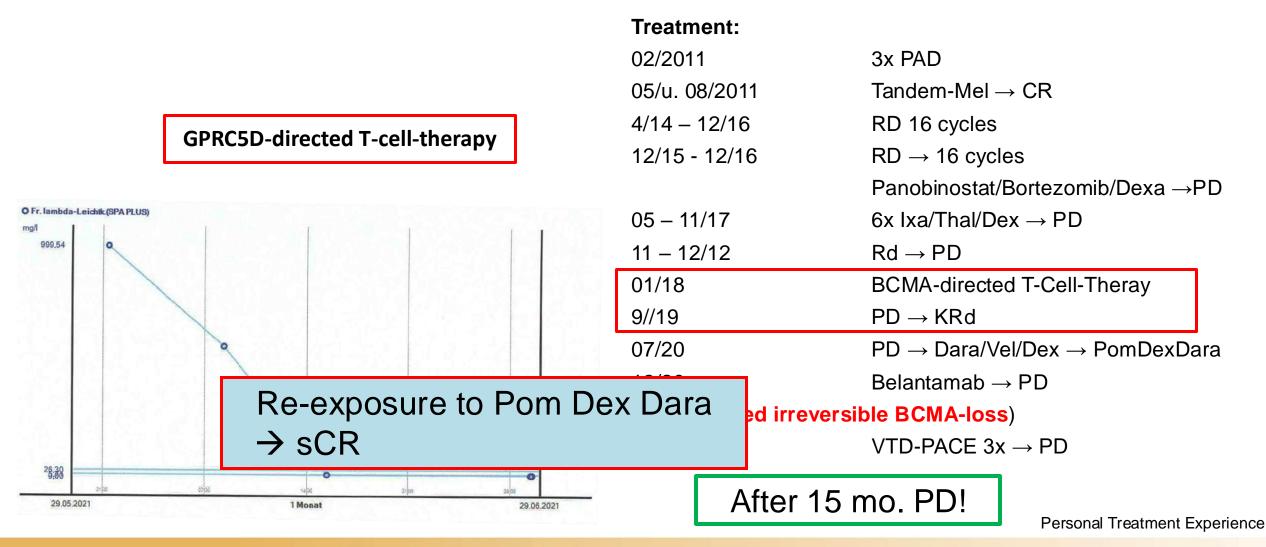
Acquired Resistance to Bispecifics: BCMA biallelic antigenic loss and resistance to AMG420


\rightarrow Irreversible loss of Efficacy of Bispecific Antibodies

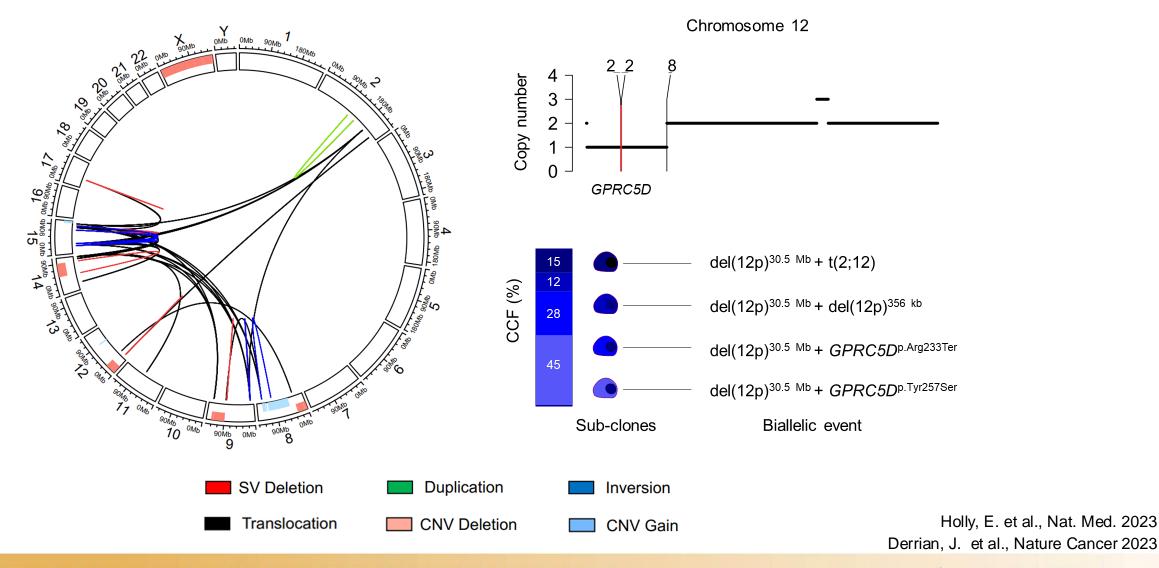
Truger, M. et al., Blood Adv 2021

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

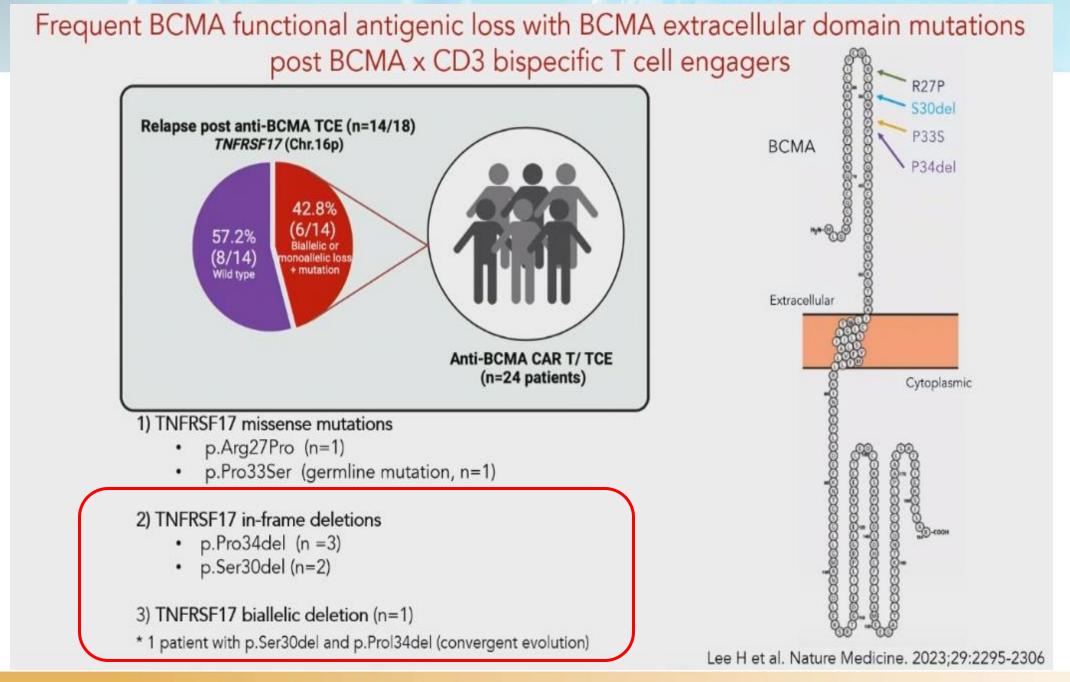
Patient Case


57 year \mathcal{Q} , LC-MM, ISS-IIIB, acute renal failure, hypercalcemia (short-term dialysis), multiple osteolyses

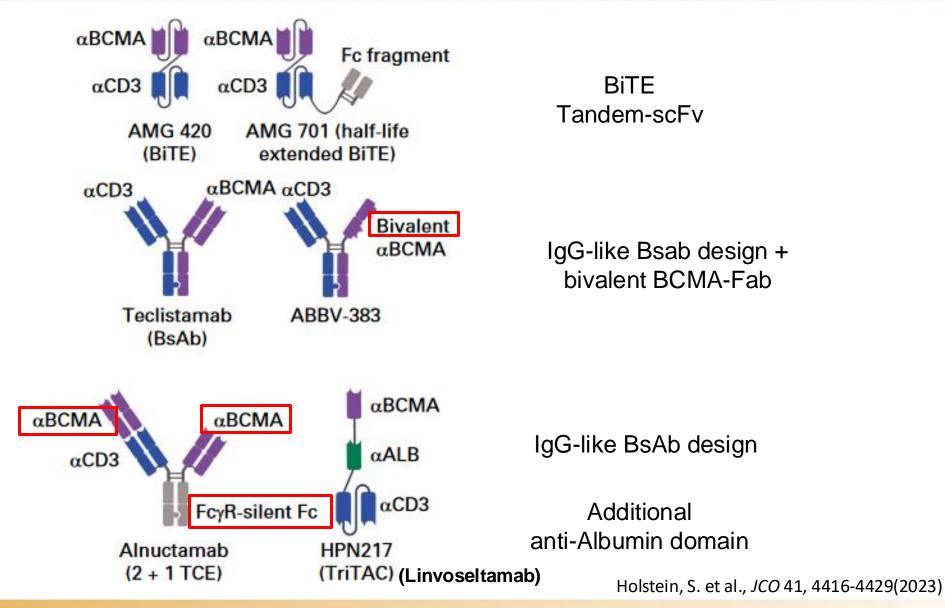
3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES


Patient Case

57 year Q, LC-MM, ISS-IIIB, acute renal failure, hypercalcemia (short-term dialysis), multiple osteolyses

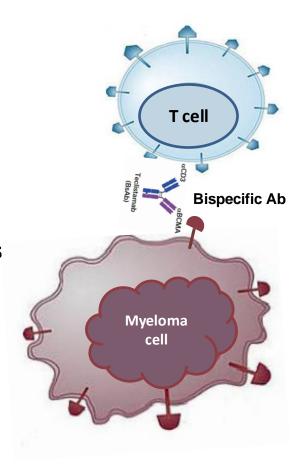


3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES


Biallelic GPRC5D loss after Talquetamab

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

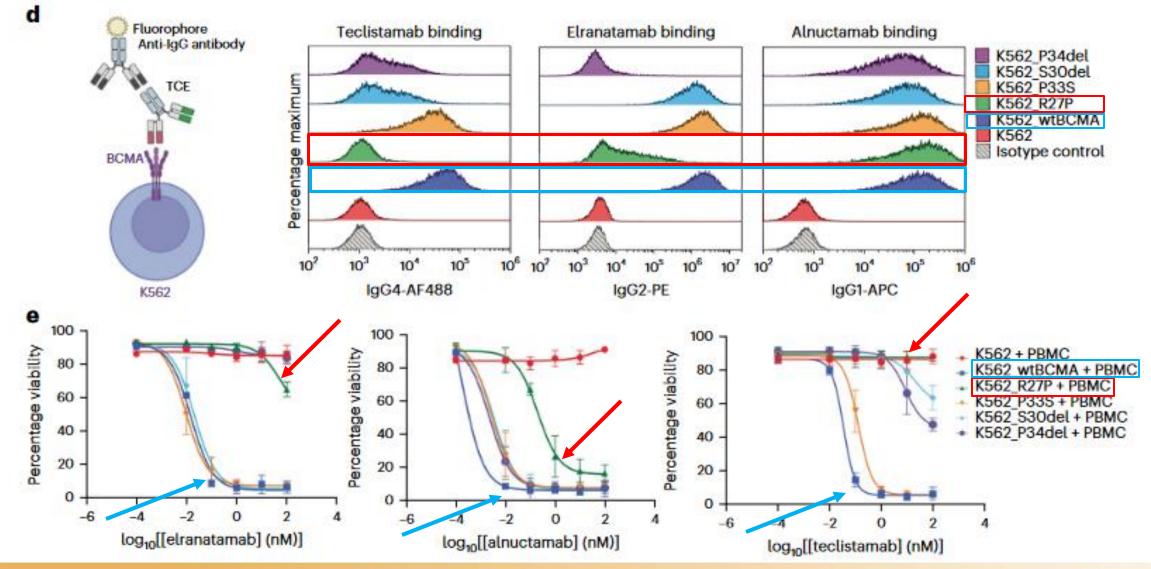
But: There are differences in MM directed bispecific Antibodies! → Antibody Format/Binding Domain (monovalent – bivalent)


3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Are there also functional Differences between MM directed Bispecific Antibodies?

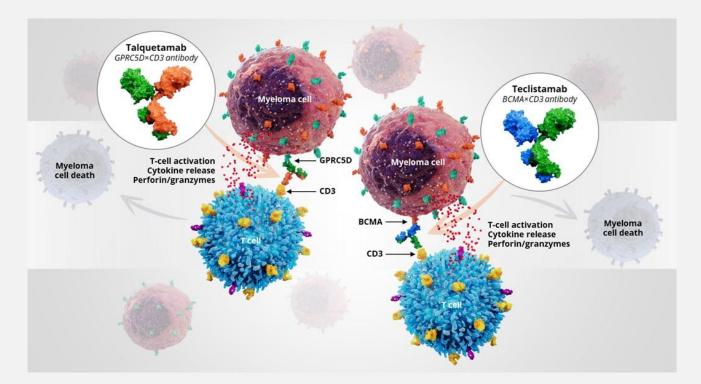
- 1. CD3 binding Domain low vs high affinity binding to CD3 (lower affinity binding Alnuctamab/ABBV-383)
 - ➡ reduce CRS/ ↑tolerability
 - impact on biodistribution: tumor vs. CD3 + rich lymphoid tissues
 - \Rightarrow \uparrow serum exposure 3 fold by weak CD3-affinity TCE
- 2. Tumor-targeting domain low vs. high affinity binding 1 vs 2 BCMA-binding domains
 - impact on distribution and clearance
 - Alnuctamab/ABBV-383: 2 BCMA-binding domains/low affinity binding to CD3

3. FC Domain


active or mutated (stability, immune response, CRS):
 Modification to minimize binding to FcγRI and C1q (e.g. Alnuctamab)

BCMA-directed bispecific construct matters!

Differential sensitivity of BCMA mutant clones to BCMA xCD3 T-cell engaging BsAb

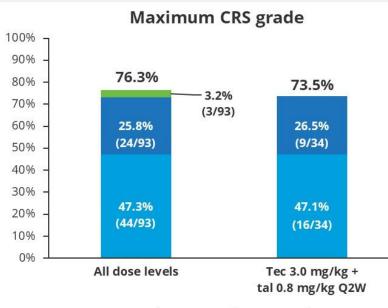

Lee, H. et al., Nat Med, September 2023

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Teclistamab and Talquetamab: First Combination of Bispecific Antibodies to Target 2 Distinct Myeloma Antigens

- Teclistamab is the only approved BCMA×CD3 BsAb with a personalized, weight-based, and flexible dosing schedule for the treatment of TCE RRMM¹
 - ORR of 63% in MajesTEC-1²
- Talquetamab is the most advanced GPRC5D-directed BsAb, with promising efficacy in patients with RRMM³
 - ORR of >70% in MonumenTAL-1³
- Targeting 2 distinct antigens may overcome some resistance mechanisms to monotherapy⁴
- We report the first results from the phase 1b RedirecTT-1 trial (NCT04586426) in patients with RRMM, including a subset with EMD

BCMA, B-cell maturation antigen; BsAb, bispecific antibody; EMD, extramedullary disease; GPRC5D, G protein-coupled receptor family C group 5 member D; ORR, overall response rate; RRMM, relapsed/refractory multiple myeloma; TCE, triple-class exposed. 1. TECVAYLI (teclistamab-cqyv). Prescribing information. Horsham, PA: Janssen Biotech, Inc; 2022. 2. Moreau P, et al. *New Engl J Med* 2022;387: 495-505. 3. Chari A, et al. *Blood* 2022;140 (suppl 1):384-7. 4. Fernandez de Larrea C, et al. *Blood* 2019;134 (suppl 1):136.



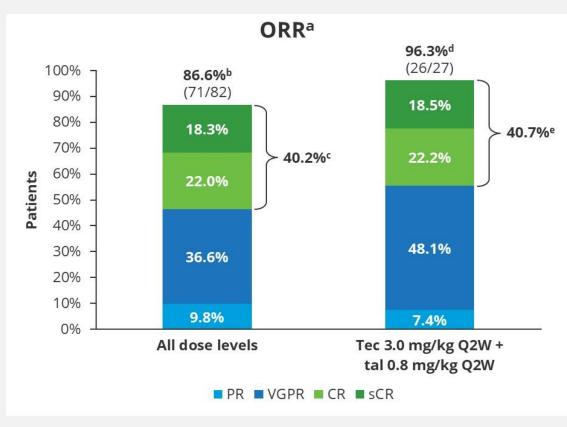
RedirecTT-1: Incidence and Severity of Cytokine Release Syndrome Consistent With Monotherapies

	All dose levels (N=93)	Tec 3.0 mg/kg Q2W + tal 0.8 mg/kg Q2W (n=34)
Patients with CRS, ^a n (%)	71 (76.3)	25 (73.5)
Time to onset (days) ^b , median (range)	2 (1–5)	2 (1-4)
Duration (days), median (range)	2 (1–8)	2 (1-4)
Patients who received supportive measures, ^c n (%)		
Tocilizumab ^d	25 (26.9)	7 (20.6)
Steroids	4 (4.3)	0
Oxygen	7 (7.5)	0
Vasopressor	1 (1.1)	0

- The majority of CRS events occurred during step-up dosing or cycle 1
- All CRS events resolved

Patients

Grade 1 Grade 2 Grade 3


Data cut-off date, March 16, 2023

^aCRS was graded by ASTCT criteria. ^bRelative to the most recent dose. ^cPatients could receive >1 supportive therapy. ^dTocilizumab was allowed for all CRS events and was allowed at grade 1 CRS; the protocol did not recommend prophylactic tocilizumab use.

ASTCT, American Society for Transplantation and Cellular Therapy; CRS, cytokine release syndrome; Q2W, every other week.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

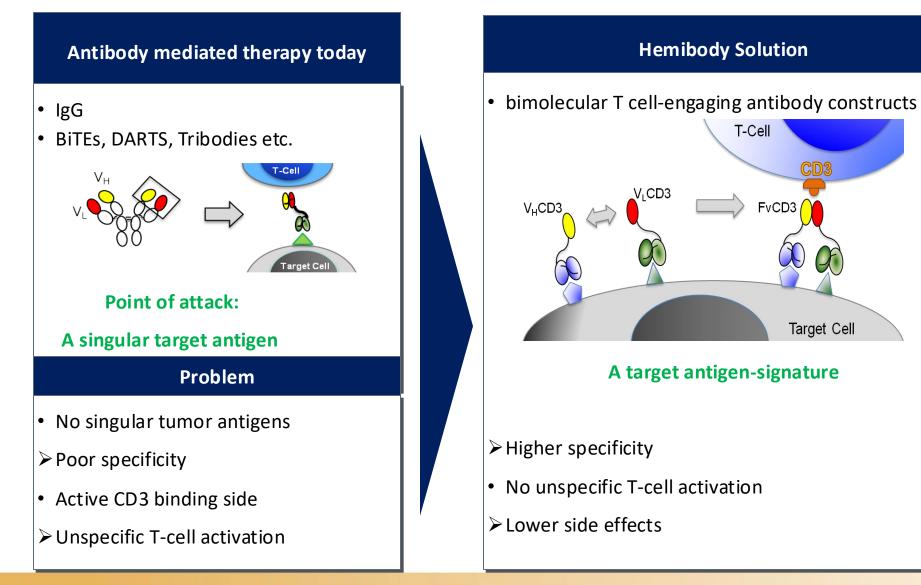
RedirecTT-1: Efficacy

• ORR was high (86.6%) across all dose levels and 96.3% at the RP2R

• At data cut-off, 61% (57/93) of patients remained on treatment

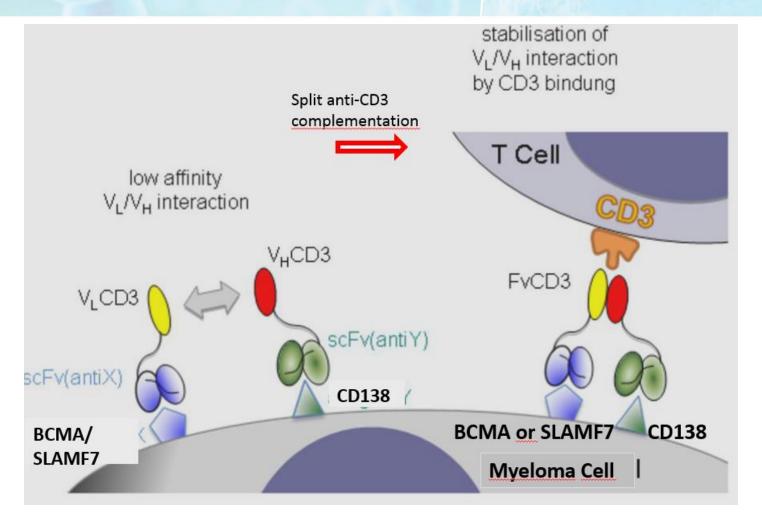
	All dose levels (N=93)	Tec 3.0 mg/kg Q2W + tal 0.8 mg/kg Q2W (n=34)
Median follow-up, months (range)	13.4 (0.3–25.6)	8.1 (0.7–15.0)
Median DOR, ^f months (95% Cl)	NE (NE–NE)	NE (NE–NE)
Median time to first response, ^f months (range)	1.97 (0–7.7)	1.48 (0–4.0)
Median time to best response, ^f months (range)	3.98 (1.1–15.7)	3.22 (1.4–10.7)
Median PFS, ^g months (95% Cl)	20.9 (13.0-NE)	NE (9.9–NE)
9-month PFS rate ^g (95% CI)	70.1 (58.0–79.4)	77.1 (50.8–90.5)

Data cut-off date, March 16, 2023.


^aResponse was assessed by investigators, based on International Myeloma Working Group criteria; response-evaluable patients have received ≥1 study treatment and have ≥1 postbaseline response evaluation by investigator. ^b95% CI, 77.3–93.1%. ^c95% CI, 29.6–51.7%. ^d95% CI, 81.0–99.9%. ^c95% CI, 22.4–61.2%. ^fIncludes patients with confirmed responses. ^sAll treated patients. CR, complete response; DOR, duration of response; NE, not estimable; ORR, overall response rate; PFS, progression-free survival; PR, partial response; Q2W, every other week; RP2R, recommended phase 2 regimen; sCR, stringent complete response; VGPR, very good partial response.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

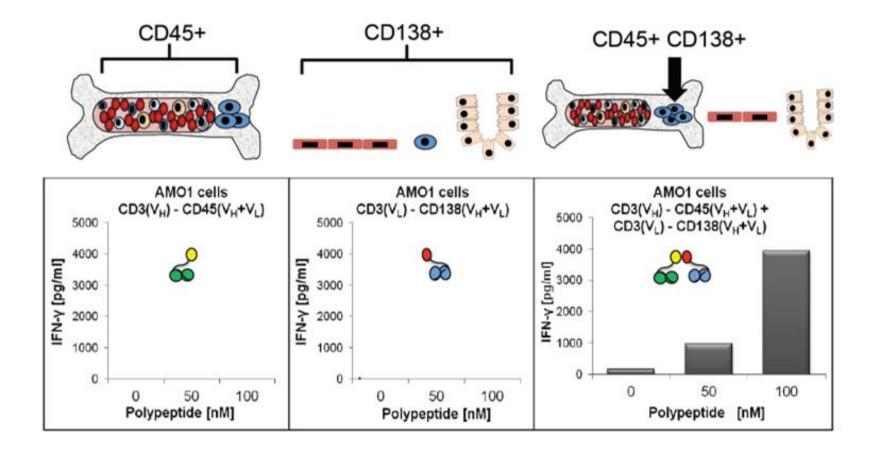
3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES


New Generation of T cell engaging Antibodies: NOVEL BI-MOLECULAR T-CELL ACTIVATING ANTIBODIES

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Banaszek A et al, Nat Comm 2019

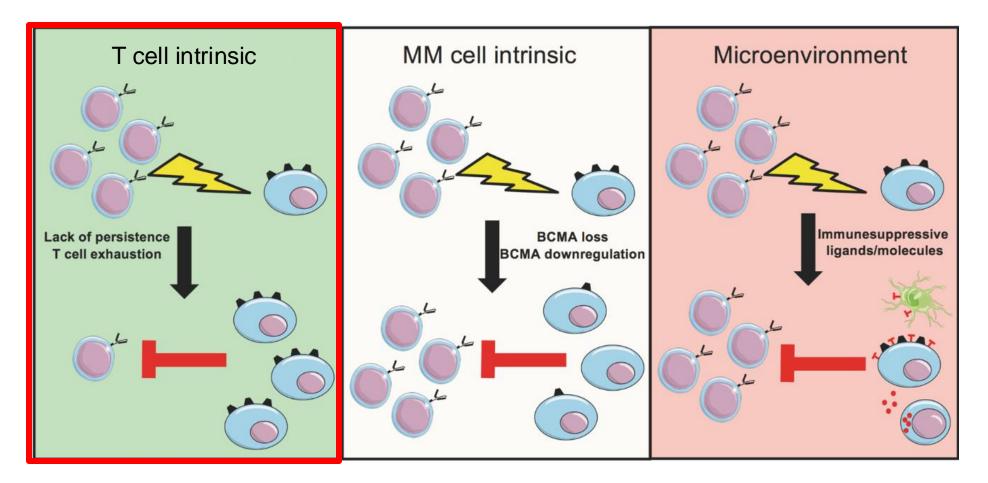
Combinatorial Approach: Trispecific Antibodies - Hemibodies


- high precision targeting of dual-antigen positive cancer cells (enhanced specificity)
- very low off-tumor toxicity because T cell activation is restricted to cancer sites
- antigen signatures of three and more target molecules can be addressed (enhanced sensitivity)

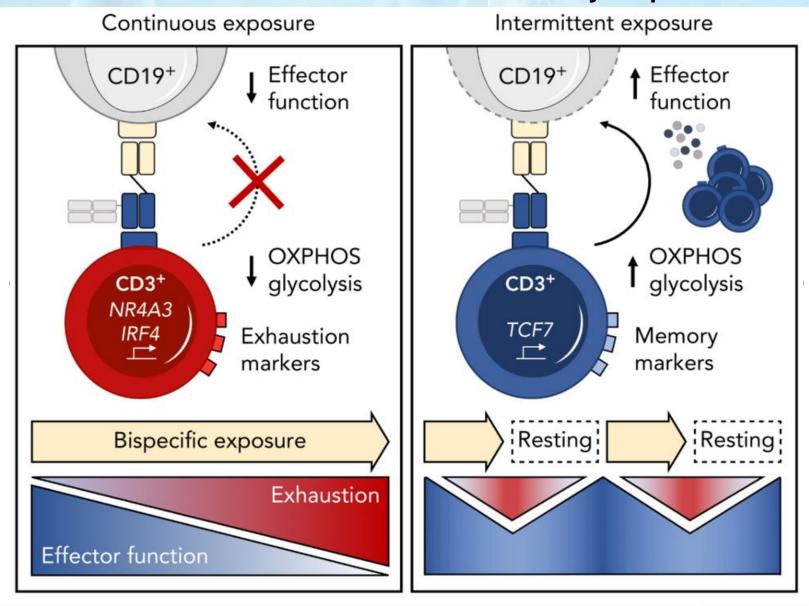
3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

BOLOGNA, ROYAL HOTEL CARLTON September 13-14, 2024

Banaszek A et al, Nat Commun 2020

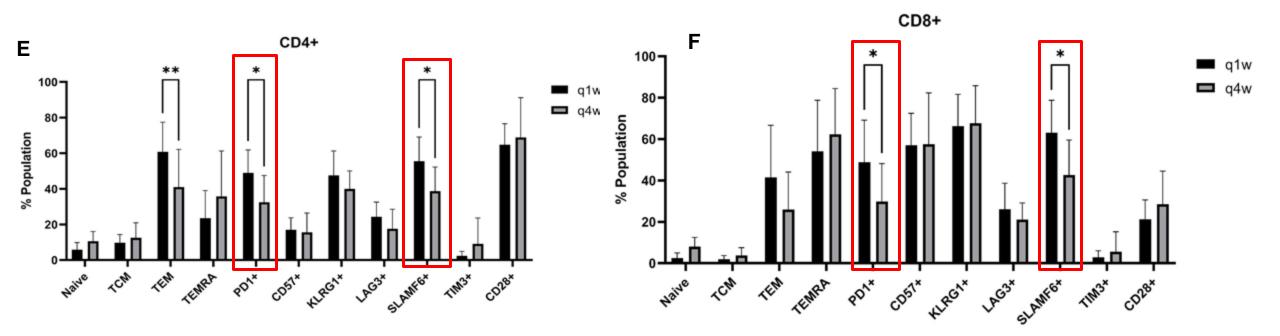

Efficacy of an MM-specific Hemibody targeting CD138 and CD45 (or CD138 and CD38)

Banaszek A et al, Nat Commun 2019


Bispecific Antibodies in Multiple Myeloma: Can we do better?

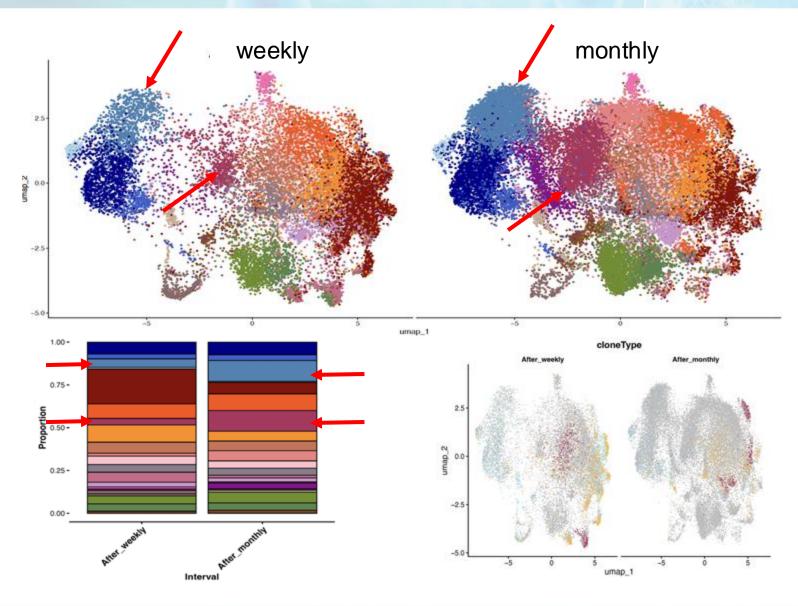
Proposed mechanisms of resistance to T cell engaging antibodies in MM

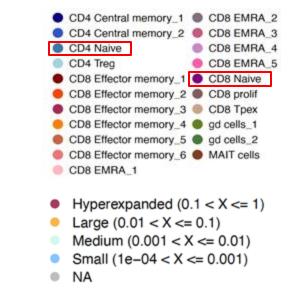
D'Agostino M et al, Leukemia 2020


Continous exposure to T Cell engaging antibodies induces T Cell exhaustion Rest ameliorates T-cell exhaustion by bispecifics

Philip et al., Blood, 8 September 2022

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

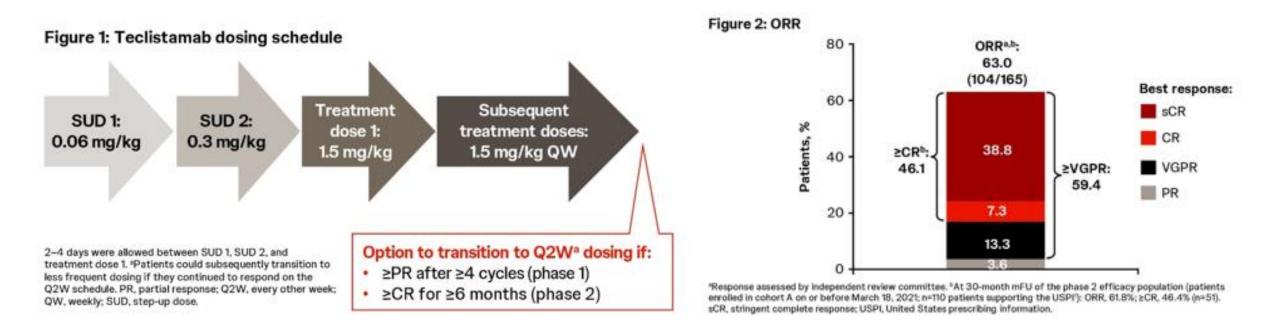

The Impact of Treatment-Free Intervals on T-Cell Exhaustion with BCMA Bispecific Antibodies



Eisele, F. et al., ASH 2023

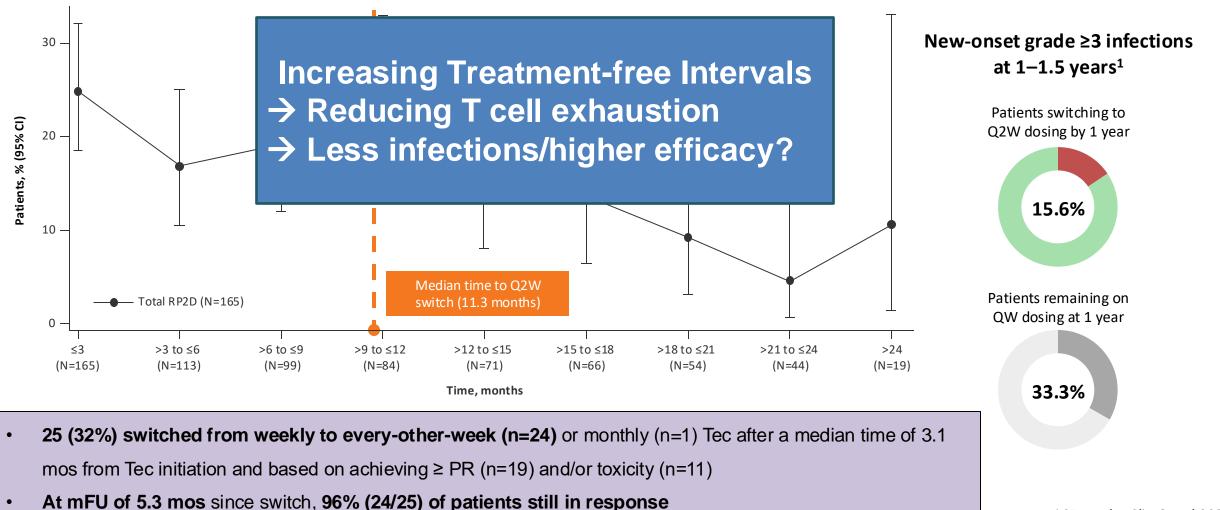
Flow cytometry analysis of T-cell subsets demonstrate a significant decline in exhaustion markers in monthly treated patients: Longitudinal (A-C) and cross-over analysis (E-G) of exhaustion markers show a significant decline in the CD4+ effector memory subset (E) could be observed, conclusive with a significant reduction in CD4+GzB+ T-cells (H) (CD4+ CTL). Paired (longitudinal) and unpaired (cross-over) t-test were used for statistical testing. *P<0.05, *P<0.01

Flow analysis and CITE-seq reveal an increase in naïve T-cells, suggesting a restoration of T cell homeostasis



CITE-seq and TCR-seq demonstrate a gain of naïve T-cells and a change in effector memory subsets: UMAP for CD3+ cross-over comparison of weekly and monthly treated patients (A + B) show a rise in CD4+ and CD8+ naïve T-cells. Furthermore we see a change in T-cell effector memory subsets. A further characterisation of these subsets is pending. The monthly group shows a more diverse RNA-expression profile than the weekly group. Hyperexpanded subsets can be shown in both groups but their localisation on the UMAP differs distinctly.

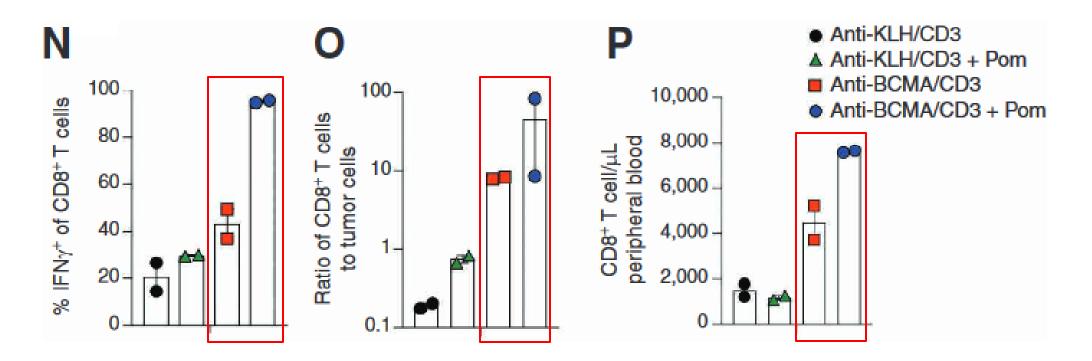
Eisele, F. et al., ASH 2023


3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Long-Term Follow-up From the Phase 1/2 MajesTEC-1 Trial of Teclistamab in Patients with r/rMM

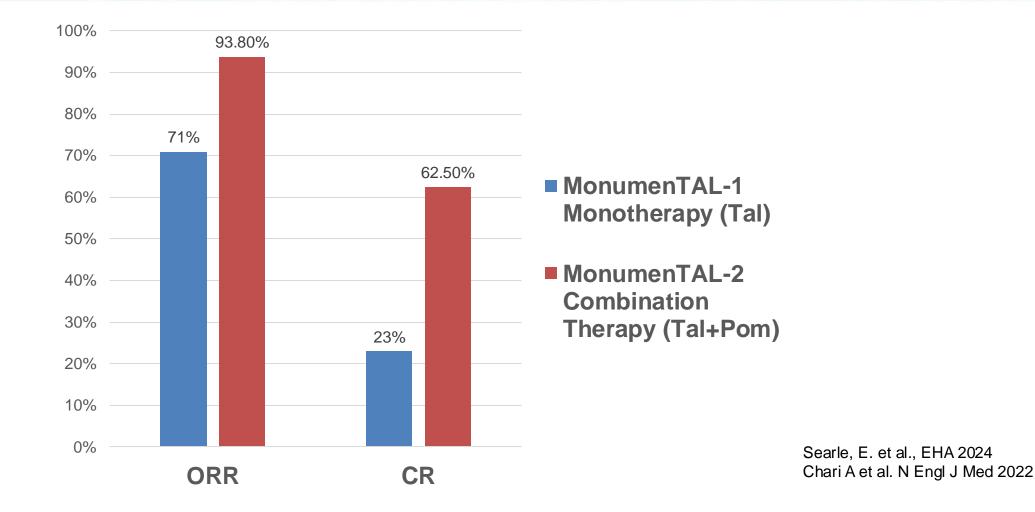
New-Onset Grade ≥3 Infections Decreased Over Time in MajesTEC-1, With Fewer Infections in Patients Switching to Q2W

New-onset grade ≥3 infections in the overall MajesTEC-1 study population



Usmani SZ, et al. J Clin Oncol 2023

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES


Combination Therapy to improve T cell Function

Pom enhances hCRBN transgenic CD8+ T-cell proliferation, cytokine production, and tumor killing induced by anti-BCMA/CD3 in IMiD-resistant tumors \rightarrow Reduces T-cell exhaustion

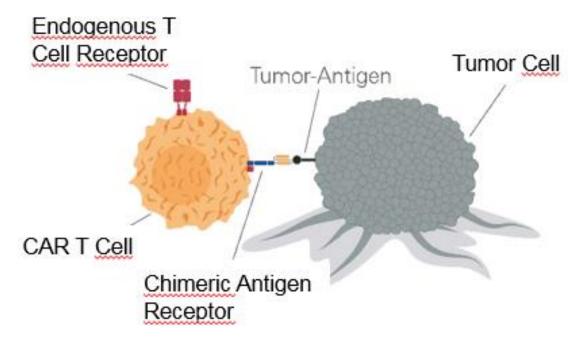
Meermeier EW et al., Blood Cancer Discov. 2022

Combination Therapy to improve T cell Function

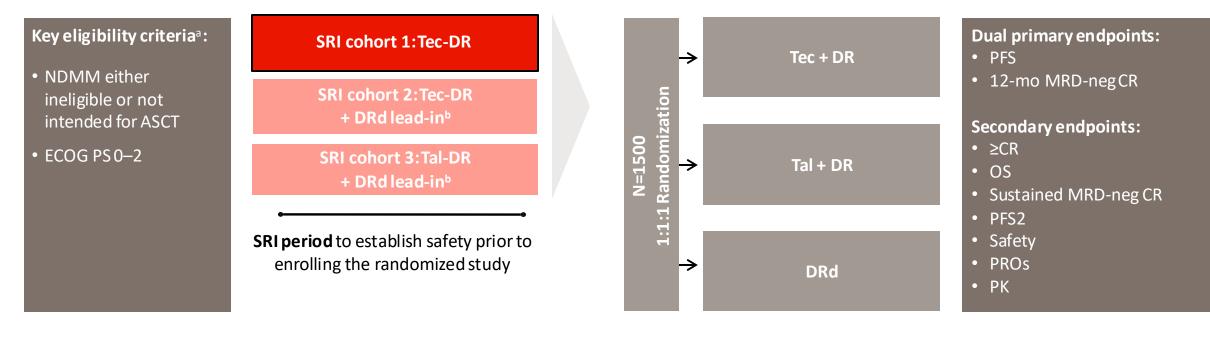
Combination therapies with IMiDs, CeIMODs or bridging therapies with the agents like selinexor were shown to improve T cell function, reduce T cell exhaustion and to improve efficacy of TCEs

Why earlier application of Bispecifics?

Fitter T cells


Improved Myeloma Cell Killing

Increased Immunogenicity of Tumor cells


- > No selection of resistent clones
- Lower tumor burden
- Lower proliferative potential of tumor cells

Better Tolerability

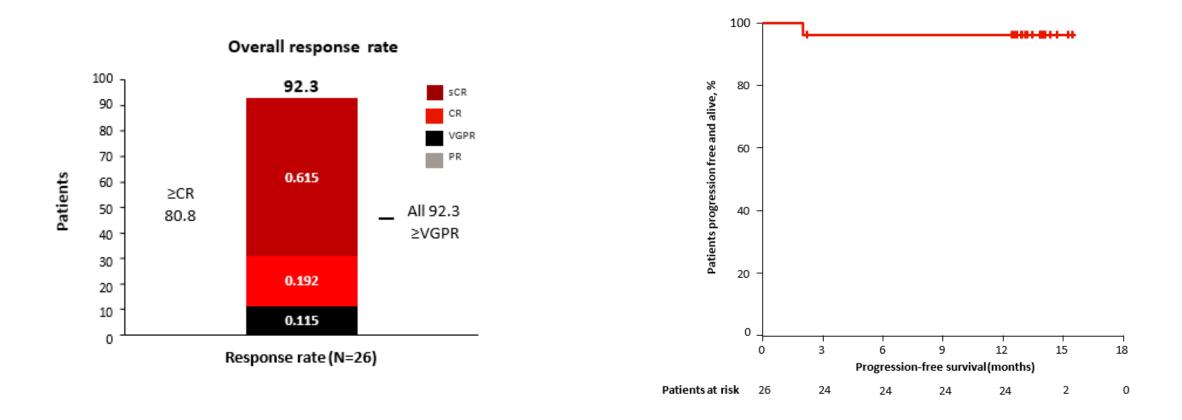
- High Attrition Rate with each treatment line
- Lower hematotoxicity
- Lower risk of secondary malignancies

MajesTEC-7: SRI Cohorts Inform Phase 3 Design

SPI cohort 1	mFU	Cycle 1	Cycle 2	Cycle 3–6	Cycle 7+ until PD
SRI cohort1:	13.8 mo	Tec step-up ^c	Tec 1.5 mg/kg QW	Tec 3 mg/kg Q2W	Tec 3 mg/kg Q4W
Tec-DR	(range, 2.0–15.4)	+ D	+ DR	+ DR	+ DR

^aSRI cohort 2 and SRI cohort 3 required an International Myeloma Working Group frailty score <2 (except when score is due to age a lone). ^bDRd lead-in (dara SC1800 mg QW; len oral 25 mg on days 1–21; dex oral/IV 20 mg QW) in cycle 1; Tec-DRor Tal-DR started in cycle 2. ^c0.06 and 0.3 mg/kg step-up doses on days 2 and 4 followed by treatment doses (1.5 mg/kg) on days 8, 15, and 22.

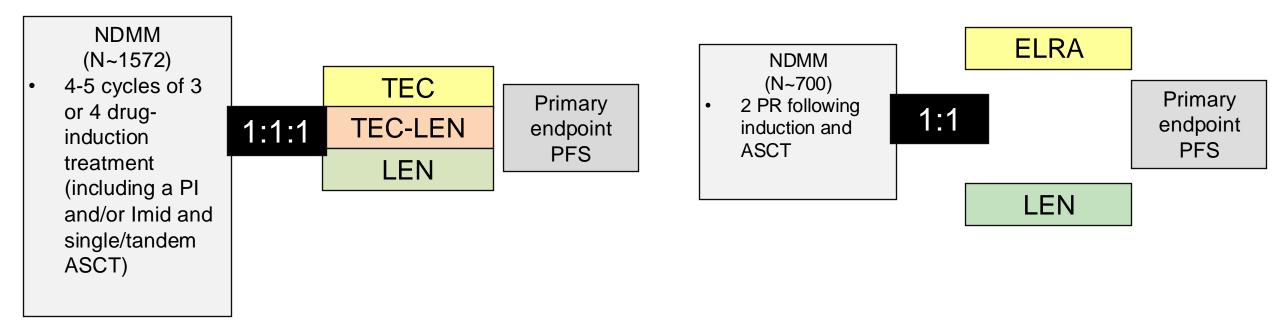
ASCT, autologous stem cell transplant; CR, complete response; D, daratumumab; dara, daratumumab; dex, dexamethasone; DR, daratumumab and lenalidomide; DRd, daratumumab, lenalidomide, and dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; IV, intravenous; Ien, lenalidomide; mFU, median follow-up; mo, months; MRD, minimal residual disease; neg, negative; NDMM, newly diagnosed multiple myeloma; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PFS2, progression-free survival as time from randomization to first PFSevent on first subsequent line of therapy; PK, pha macokinetics; PRO, patient-reported outcome; Q2W, every other week; Q4W; every 4 weeks; Q4W, weekly; SC, subcutaneous; SRI, safety run-in; tal,


Presented by S Manier at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting; May 31–June 4, 2024; Chicago, IL, USA & Virtual

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

MajesTEC-7 (Tec-DR) SRI Cohort 1: Efficacy and Progression-free Survival Median follow-up of 13.8 months

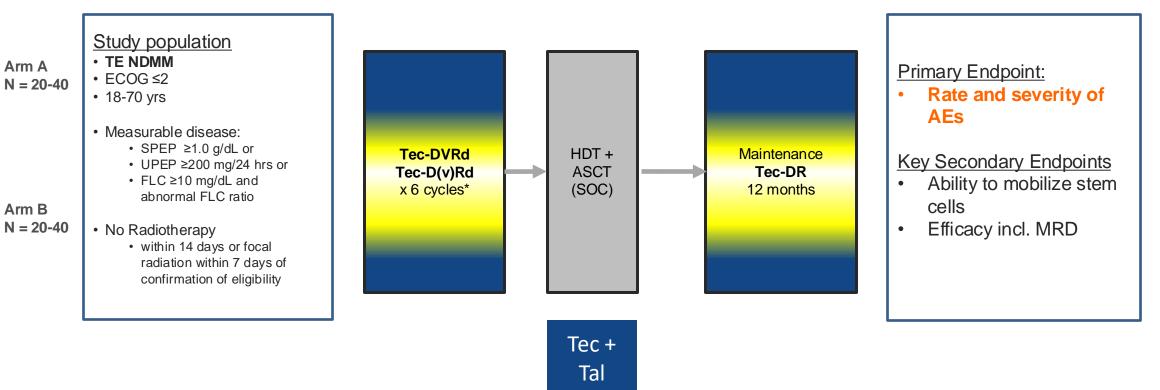
- 92.3% ORR (80.8% ≥CR); all patients achieved ≥VGPR
- No disease progressions occurred


- At median follow-up of 13.8 months, one PFS event has occurred
- Estimated 12-month DOR and PFS were 100.0% and 96.2%, respectively

Bispecific antibodies as mainenance treatment after autologous transplant

MajesTEC-4 (NCT05243797)

MagnetisMM-7 (NCT05317416)

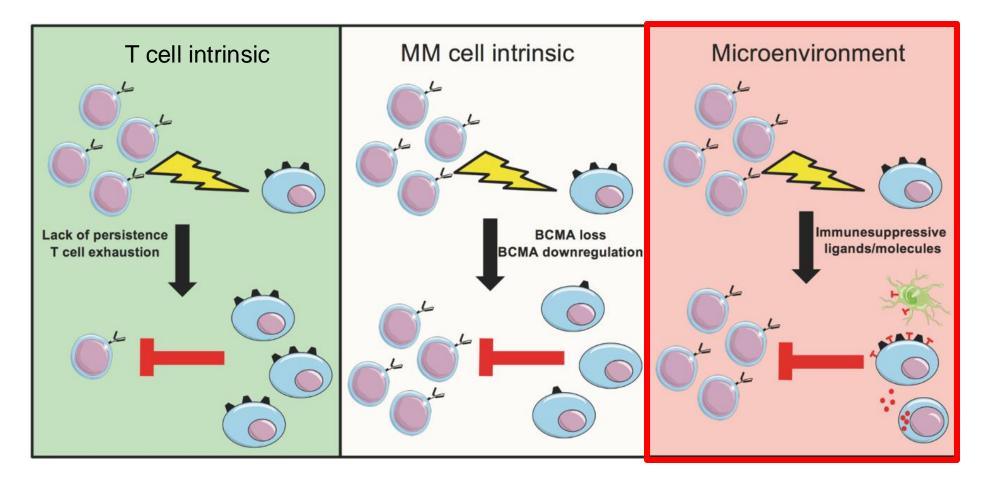

→ Prior debulking to optimise effector: target ratio (rational sequencing) → T cell fitness is better in earlier lines of therapy

Van de Donk, N., EMMA Madrid 2024

DSMM XX / GMMG-HD10 / MajesTEC-5

ightarrow BsAb plus ASCT

ightarrow BsAb replace ASCT



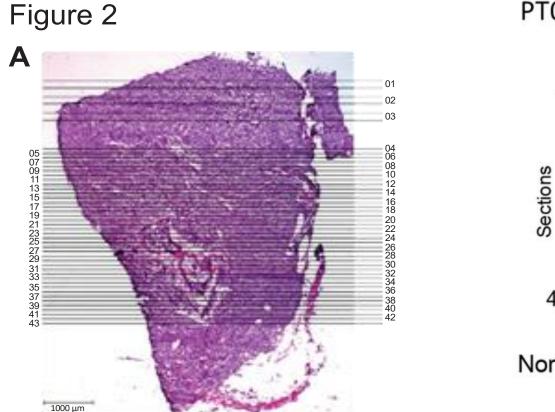
Co-Pls Raab/Rasche

Anti-BCMA CAR T-cell therapy in Multiple Myeloma: Can we do better?

Proposed mechanisms of resistance to anti-BCMA CAR T-cell therapy in MM

D'Agostino M et al, Leukemia 2020

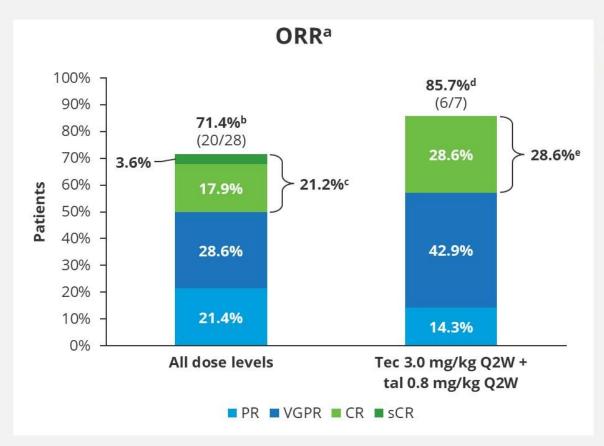
EMD



Trial


- Ide-cel: ORR 59% vs. 75%
 (Hansen *et al*)
- Teclistamab: ORR ~35 vs 70%
- Talquetamab: ORR ~40 vs 80%
- Cilta-cel: PFS lower in EMD

Is there a microenvironment in extramedullary MM as well?

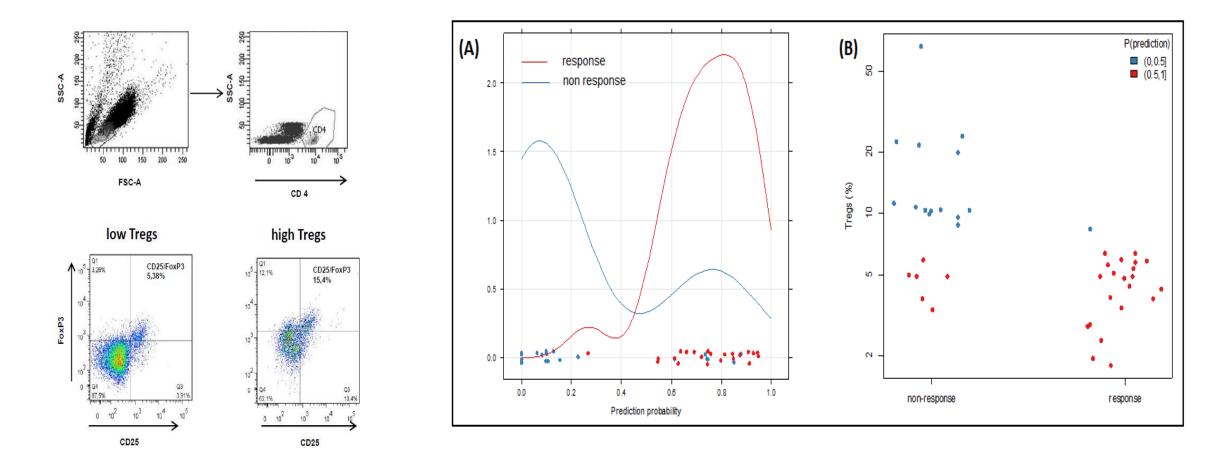

Tomo-seq Highlights the Spatial Heterogeneity of a Whole Tumor Lesion

PT01A

RedirecTT-1: High ORR in Extramedullary Disease

- All were soft tissue plasmacytomas
- At the RP2R (n=11):
 - Median follow-up, 7.2 mo (range 0.7–14.2)
 - 85.7% (6/7 evaluable) ORR
 - 28.6% (2/7 evaluable) ≥CR

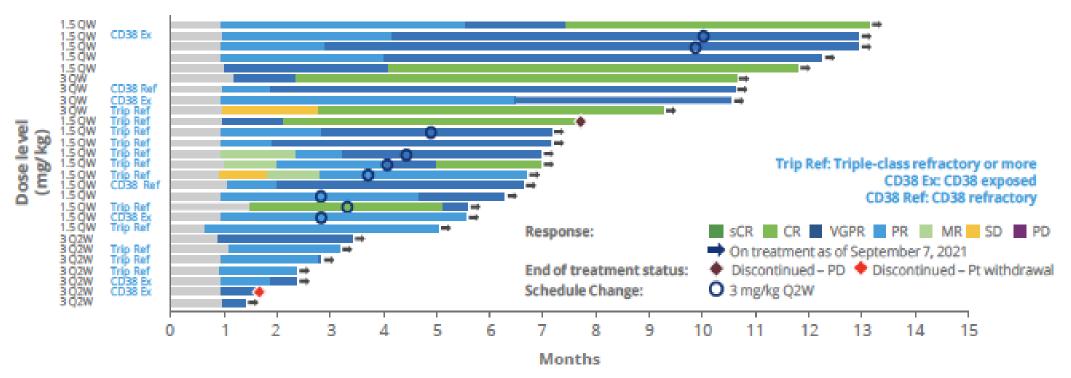
	All dose levels (N=35)	Tec 3.0 mg/kg Q2W + tal 0.8 mg/kg Q2W (N=11)
Median DOR, ^f months (95% CI)	12.9 (4.17–NE)	NE (4.17–NE)
Median PFS, ^g months (95% CI)	6.1 (2.5–9.9)	9.9 (2.4–NE)


Data cut-off date, March 16, 2023. ^aResponse was assessed by investigators, based on International Myeloma Working Group criteria; response-evaluable patients have received ≥1 study treatment and have ≥1 postbaseline response evaluation by investigator. ^b95% CI, 51.3–86.8%. ^c95% CI, 8.3–41.0%. ^d95% CI, 42.1–99.6%. ^e95% CI, 3.7–71.0%. ^fIncludes patients with confirmed responses. ^gAll treated patients. CR, complete response; DOR, duration of response; NE, not estimable; ORR, overall response rate; PFS, progression-free survival; PR, partial response; Q2W, every other week; RP2R, recommended phase 2 regimen; sCR, stringent complete response; VGPR, very good partial response.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Impact of tumor microenvironment High levels of circulating Tregs $\rightarrow \downarrow$ Efficacy of TCEs



Removal of Tregs may convert non-responders to responders Disadvantage of CD3-binding bsTE: recruiting different types of T cells including Tregs

Duell, J. et al., Leukemia 2017

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Subcutaneous Teclistamab in Combination with Daratumumab (TRIMM1) for the Treatment of Patients with r/r MM

Figure 1: Duration of response to tec + dara (n=27)

Addition of anti-CD38 Antibodies: Depletion of regulatory cells (!?) 个Response rate and 个CR rate

Rodriguez-Otero P, et al. Blood 2021;138 (Suppl 1):1647.

How to improve Therapy with BiAbs

- Long-term follow-up of trials with BisAb show long-lasting deep responses and no additional toxicity
- New formats of BisAb (high affinity binders to BCMA, low affinity binders to CD3, half-life extension) might improve efficacy and safety, esp. in BCMA mutants
- Short Duration of Treatment either fixed duration or treatment with extended treatment free intervals will allow to maintain/recover T cell fitness and reduce the risk of Target Antigen Loss !!
- Combination Therapy (IMiDs, CelMODs, ICPis, anti-CD38 MoAbs) to improve T cell function
- Targeting > 1 surface antigen on the Myeloma cell by combining 2 bispecific antibodies with different targets or trispecific antibodies, esp. In pts. with EMD

Thanks to

Medizinische Klink/Poliklinik II, WürzburgM. ToppM. HudecekT. BummS. DanhofL. RascheM. KortümG. StuhlerA. Beilhack

Klinik für Innere Medizin 5, Nürnberg S. Knop

Immunologie, Würzburg W. Kastenmüller G. Gasteiger

Universitätsklinikum Heidelberg N. Weihold M. Raab

Medizinische Klinik III, Regensburg W. Herr M. Edinger

Med. Mikrobiologie, TUMD. BuschF. Bassermann

Universitätsklinikum Freiburg M. Engelhardt

Zelltherapie u. Immunologie, Leipzig U. Köhl

Universitätsklinikum Hamburg Eppendorf K. Weisel

Ospedale San Raffaele, Mailand M. Casucci C. Bonini Fondazione IRCCS Istituto Nazionale dei Tumori, MilanoP. CorradiniV. Marasco

Università di Torino F. Gay M. Boccadoro R. Mina

Università di Bologna M. Cavo E. Zamagni

Saint-Antoine Hospital, Sorbonne University M. Mohty

General Hospital of Athens E. Terpos

National and Kapodistrian University of Athens T. Dimopoulos

Nantes Université C. Touzeau

P. Moreau

Cima Universidad de NavarraF. Prósper CardosoP. Rodríguez OteroJ. San MiguelB. Paiva

Hospital Clínic Barcelona J. Bladé

Memorial Sloan-Kettering Cancer Center, NYC M. Sadelain M. van den Brink

Fred Hutchinson Cancer Research Center, Seattle S.R. Riddell M. Jenssen Myeloma Research RotterdamP. SonneveldA. Broijl

Amsterdam UMC N. van de Donk

S. Zweegman

Patients and family members

Thank you for your kind attention!

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES